How to detect an outlier (whether or not it exists)

by Bo E. Honoré ${ }^{1}$

Consider the model

$$
y_{i}=x_{i}^{\prime} \beta+\gamma d_{i}+\varepsilon_{i}
$$

where $\left(x_{i}, \varepsilon_{i}\right)$ is i.i.d. $E\left[\varepsilon_{i} \mid x_{i}\right]=0$ and

$$
d_{i}=\left\{\begin{array}{lll}
1 & \text { if } & i=1 \\
0 & \text { if } & i \neq 1
\end{array}\right.
$$

It is tempting to test whether the first observation is an outlier by tesing whether $\gamma=0$. As we will see, this can be a good idea if you want to conclude that it is, but not necessarily if you actually want to know "the truth."

Let $z_{i}=\left(x_{i}, d_{i}\right)$. The OLS estimator of (β, γ) minimizes

$$
\sum_{i=1}^{n}\left(y_{i}-x_{i}^{\prime} b-g d_{i}\right)
$$

It is clear that the solution to this would be

$$
\begin{aligned}
& \widehat{\gamma}=y_{1}-x_{1}^{\prime} \widehat{\beta} \\
& \widehat{\beta}=\left(\sum_{i=2}^{n} x_{i} x_{i}^{\prime}\right)^{-1} \sum_{i=2}^{n} x_{i} y_{i}
\end{aligned}
$$

hence $\widehat{\beta}$ is consistent etc.
The heteroskedasticity-consistent standard errors of the OLS estimator of β and γ are the square roots of the diagonal of

$$
\begin{aligned}
\widehat{V}= & \left(\sum_{i=1}^{n} z_{i} z_{i}^{\prime}\right)^{-1}\left(\sum_{i=1}^{n} e_{i}^{2} z_{i} z_{i}^{\prime}\right)\left(\sum_{i=1}^{n} z_{i} z_{i}^{\prime}\right)^{-1} \\
= & \left(\begin{array}{ll}
\sum_{i=1}^{n} x_{i} x_{i}^{\prime} & \sum_{i=1}^{n} x_{i} d_{i} \\
\sum_{i=1}^{n} d_{i} x_{i}^{\prime} & \sum_{i=1}^{n} d_{i}^{2}
\end{array}\right)^{-1}\left(\begin{array}{ll}
\sum_{i=1}^{n} e_{i}^{2} x_{i} x_{i}^{\prime} & \sum_{i=1}^{n} e_{i}^{2} x_{i} d_{i} \\
\sum_{i=1}^{n} e_{i}^{2} d_{i} x_{i}^{\prime} & \sum_{i=1}^{n} e_{i}^{2} d_{i}^{2}
\end{array}\right) \\
& \left(\begin{array}{ll}
\sum_{i=1}^{n} x_{i} x_{i}^{\prime} & \sum_{i=1}^{n} x_{i} d_{i} \\
\sum_{i=1}^{n} d_{i} x_{i}^{\prime} & \sum_{i=1}^{n} d_{i}^{2}
\end{array}\right)^{-1} \\
= & \left(\begin{array}{ll}
\sum_{i=1}^{n} x_{i} x_{i}^{\prime} & x_{1} \\
x_{1}^{\prime} & 1
\end{array}\right)^{-1}\left(\begin{array}{ll}
\sum_{i=2}^{n} e_{i}^{2} x_{i} x_{i}^{\prime} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
\sum_{i=1}^{n} x_{i} x_{i}^{\prime} & x_{1} \\
x_{1}^{\prime} & 1
\end{array}\right)^{-1}
\end{aligned}
$$

[^0]because $e_{1}=0$ (e_{i} is the residual for the i 'th observation)
To simplify the notation, let
\[

\left($$
\begin{array}{ll}
\sum_{i=1}^{n} x_{i} x_{i}^{\prime} & x_{1} \\
x_{1}^{\prime} & 1
\end{array}
$$\right)^{-1}=\left($$
\begin{array}{ll}
a & b \\
b^{\prime} & c
\end{array}
$$\right)
\]

then

$$
\begin{aligned}
\hat{V} & =\left(\begin{array}{cc}
a & d \\
d^{\prime} & c
\end{array}\right)\left(\begin{array}{ll}
\sum_{i=2}^{n} e_{i}^{2} x_{i} x_{i}^{\prime} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
a & d \\
d^{\prime} & c
\end{array}\right) \\
& =\left(\begin{array}{ll}
a\left(\sum_{i=2}^{n} e_{i}^{2} x_{i} x_{i}^{\prime}\right) a & a\left(\sum_{i=2}^{n} e_{i}^{2} x_{i} x_{i}^{\prime}\right) d \\
d^{\prime}\left(\sum_{i=2}^{n} e_{i}^{2} x_{i} x_{i}^{\prime}\right) a & d^{\prime}\left(\sum_{i=2}^{n} e_{i}^{2} x_{i} x_{i}^{\prime}\right) d
\end{array}\right)
\end{aligned}
$$

The estimated variance of $\hat{\gamma}$ is $d^{\prime}\left(\sum_{i=2}^{n} e_{i}^{2} x_{i} x_{i}^{\prime}\right) d$. Clearly the term in the middle is of order n. Moreover

$$
d=x_{1}^{\prime}\left(\sum_{i=1}^{n} x_{i} x_{i}^{\prime}-x_{1} x_{1}^{\prime}\right)^{-1}
$$

which is of order $\frac{1}{n}$. It therefore follows that the estimated variance of $\widehat{\gamma}$ is of order $\frac{1}{n}$ and since $\hat{\gamma}$ will converge to $\gamma+\varepsilon_{1}$ this means that (unless $\gamma+\varepsilon_{1}$ happens to equal 0) the calculated t -statistic will converge to $\pm \infty$ with probability 1 whether or not $\gamma=0$.

[^0]: ${ }^{1}$ Comments should be emailed to bo@honore.com

